نوع المستند : المقالة الأصلية
المؤلفون
1 The Research Division of School and its Environment, National Institute for Research in Education, Algeria
2 The Research Division of Educational Governance, National Institute for Research in Education, Algeria
المستخلص
الكلمات الرئيسية
الموضوعات الرئيسية
References:
Khanna, L., Narayan Singh , S., & Alam, M. (2016). Educational data mining and its role in determining factors affecting students academic performance: A systematic review. 1st India International Conference on Information Processing (IICIP), (pp. 1 - 7). Delhi, India. doi:doi: 10.1109/IICIP.2016.797
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated. WIREs Data Mining Knowl Discov. e1355. doi:https://doi.org/10.1002/widm.1355
Aleem, A., & Gore, M. (2020). Educational Data Mining Methods: A Survey. IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT)Gwalior,, (pp. 182-188). India. doi:doi: 10.1109/CSNT48778.2020.9115734.
Fernández, D. B., & Luján-Mora, S. (2017). Comparison of applications for educational data mining in Engineering Education," 2017 IEEE World Engineering Education Conference (EDUNINE). IEEE World Engineering Education Conference (EDUNINE), (pp. 81-85). Santos, Brazil. doi:doi: 10.1109/EDUNINE.2017.7918187.
Jones, K. M., Rubel, A., & LeClere, E. (2020). A matter of trust: Higher education institutions as information fiduciaries in an age of educational data mining and learning analytics. Journal of the Association for Information Science and Technolo, 7(10), 1227-1241. doi:https://doi.org/10.1002/asi.24327
Yağcı, M. (2022). Educational data mining: Prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 1-9. https://doi.org/10.1186/s40561-022-00192-z
Renato Carauta Ribeiro & Edna Dias Canedo,Using Data Mining Techniques to Perform School Dropout Prediction: A Case Study, spring Nature Switzerland AG 2020, 17th International Conference on Information Technology–New Generations (ITNG 2020), Advances in Intelligent Systems and Computing v 1134, https://doi.org/10.1007/978-3-030-43020-7_28, p-p:1637–1667.
Annalina Sarra, Lara Fontanella, Simone Di Zio, Identifying Students at Risk of Academic Failure Within the Educational Data Mining Framework, https://doi.org/10.1007/s11205-018-1901-8, Springer Science+Business Media B.V, part of Springer Nature 2018, published online 19 april 2018.
Kalyani M Raval (B.Com, MSc IT), Data Mining Techniques, International Journal of Advanced Research in Computer Science and Software Engineering, Volume 2, Issue 10, October 2012, Research Paper Available online at: www.ijarcsse.com
Kabathova, J.; Drlik, M. (2021). Towards Predicting Student’s Dropout in University Courses Using Different Machine Learning Techniques. Appl. Sci. 2021, 11, 3130. https://doi.org/10.3390/app11073130
Janne Parri,(2006), Quality in Higher Education,Vadyba/ Management, Index Copernicus International,Vol.11,Iss:02,Poland ,p 107.
James J.Jiang and all, (2002), Measuring Information System Service Quality: SERVQUAL from the Other Side, Journal of MIS Quarterly, Vol.26,No.2, p85.
Ribeiro, R.C., Canedo, E.D. (2020). 17th International Conference on Information Technology–New Generations (ITNG 2020). Advances in Intelligent Systems and Computing, vol 1134. Springer, Cham. https://doi.org/10.1007/978-3-030-43020-7_28