نماذج تحليل المسار متعدد المجموعات المفسرة للعبء المعرفي في ضوء فاعلية الذات للحاسوب اللوحي التعليمي والذکاء الناجح في التعلم عن بعد نتيجة فيروس کورونا لدى طلاب المرحلة الثانوية المصرية

نوع المستند : المقالة الأصلية

المؤلف

منال محمود محمد مصطفي، أستاذ مساعد علم النفس التربوي، کلية الدراسات العليا للتربية، جامعة القاهرة

المستخلص

المستخلص
هدفت الدرسة إلى تحديد نموذج تحليل المسار الافضل للعلاقات السببية بين کل من المتغير المستقل وهو الذکاء الناجح للتکييف مع التعلم عن بعد نتيجة فيروس کورونا والمتغير الوسيط وهو فاعلية الذات للحاسوب اللوحي التعليمي والمتغير التابع وهو العبء المعرفي وکذلک التحقق من تحليل المسار متعدد المجموعات عبر عينات من طلاب المرحلة الثانوية، وتم تصميم ثلاثة مقاييس من خلال المواقف الحيانية لکل من: الذکاء الناجح وفاعلية الذات للحاسوب اللوحي التعليمي والعبء المعرفي من إعداد الباحثة، واستُخدم التحليل العاملي التوکيدي للتحقق من صدق المقاييس، کما استخدمت الدراسة المنهج الوصفي الارتباطي وکذلک تحليل المسار متعدد المجموعات والمنهج الوصفي المقارن، وقد بلغت عينة  الدراسة (ن= 1194) من طلاب المدارس الثانوية. أسفرت نتائج الدراسة عن: تأثير موجب مباشر ودال إحصائيًّا للذکاء الناجح في فاعلية الذات للحاسوب اللوحي التعليمي، وتأثير سالب مباشر دال إحصائيًّا لفاعلية الذات للحاسوب اللوحي في العبء المعرفي، وتأثير سالب مباشر دال إحصائيًّا للذکاء الناجح في العبء المعرفي، وتأثير سالب غير مباشر جزئي دال إحصائيًّا للذکاء الناجح من خلال فاعلية الذات للحاسوب کمتغير وسيط في العبء المعرفي، وتأثير کلي دال إحصائيًّا، وعدم وجود فروق دالة إحصائيًّا بين نماذج تحليل المسار الأربعة في العلاقات السببية بين الذکاء الناجح وفاعلية الذات للحاسوب اللوحي والعبء المعرفي.

الكلمات الرئيسية

الموضوعات الرئيسية


المراجع:
الحربي، مروان بن على (2015). الانهماک بالتعلم في ضوء اختلاف مصدر العبء المعرفي ومستوى العجز المتعلم ورتبة السيطرة المعرفية لدى طلاب المرحلة الثانوية. مجلة العلوم التربوية، 27(3)، 461-488. http://search.mandumah.com/Record/735328
Andrade, J. M. (2016). Multimedia types as moderators/mediators to the relationship between college students’ learning beliefs and the impact on cognitive load in a general education undergraduate course with an asynchronous component. In Dissertation Abstracts International Section A: Humanities and Social Sciences (Vol. 76, Issue 11–A(E)). ProQuest Information & Learning.
Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research70(2), 181–214. https://doi.org/10.2307/1170661.
Ayres, P. (2006). Using subjective measures to detect variations of intrinsic cognitive load within problems. Learning and Instruction16(5), 389–400. https://doi.org/10.1016/j.learninstruc.2006.09.001.
Ayres, P., & Sweller, J. (2005). The Split-Attention Principle in Multimedia Learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning. (pp. 135–146). Cambridge University Press. https://doi.org/10.1017/CBO9780511816819.009. 
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall, Inc.
Barrett, B. P. (2019). Computer anxiety, computer self-efficacy, and computer experience: Prediction of performance and engagement in online college students [ProQuest Information & Learning]. In Dissertation Abstracts International: Section B: The Sciences and Engineering (Vol. 80, Issue 3–B(E). ProQuest Information & Learning.
Blayney, P., Kalyuga, S., & Sweller, J. (2015). Using cognitive load theory to tailor instruction to levels of accounting students’ expertise. Journal of Educational Technology & Society18(4), 199–210.
Bleicher, R. E. & Lindgren, J. (2005). Success in science learning and preservice science teaching self-efficacy. Journal of Science Teacher Education, 16, 205–225.
Bollen, K. A. (1989). Structural equations with latent variables. John Wiley & Sons. https://doi.org/10.1002/9781118619179.
Borghini, G., Aricò, P., Di Flumeri, G., & Babiloni, F. (2017). Industrial neuroscience in aviation: Evaluation of mental states in aviation personnel (Vol. 18). Springer International Publishing. https://doi.org/10.1007/978-3-319-58598-7.
Bowman, S. (2019). Correlation of cognitive load with the physical learning environment for undergraduate college students in an introduction to psychology class. In Dissertation Abstracts International: Section B: The Sciences and Engineering (Vol. 80, Issue 3–B(E)). ProQuest Information & Learning.
Brünken, R., Steinbacher, S., Plass, J. L., & Leutner, D. (2002). Assessment of cognitive load in multimedia learning using dual-task methodology. Experimental Psychology49(2), 109–119. https://doi.org/10.1027//1618-3169.49.2.109.
Cauble, A. E. & Thurston, L. P. (2000). Effects of interactive multimedia training on knowledge, attitudes, and self-efficacy of social work students. Research on Social Work Practice, 10(4), 428–437.
Chan, D. W. (2007). Burnout, Self-efficacy, and Successful Intelligence among Chinese Prospective and In-service School Teachers in Hong Kong. Educational Psychology27(1), 33–49. https://doi.org/10.1080/01443410601061397.
Chan, D. W. (2008). Teacher self-efficacy and successful intelligence among Chinese secondary school teachers in Hong Kong. Educational Psychology28(7), 735–746. https://doi.org/10.1080/01443410802259246.
Chang, C.-C., & Yang, F.-Y. (2010). Exploring the cognitive loads of high-school students as they learn concepts in web-based environments. Computers & Education55(2), 673–680. https://doi.org/10.1016/j.compedu.2010.03.001.
Chen, O., Kalyuga, S., & Sweller, J. (2017). The expertise reversal effect is a variant of the more general element interactivity effect. Educational Psychology Review, 29, 393–405. http://dx.doi.org/10.1007/s10648- 016-9359-1.
Cheng, T. S., Lu, Y. C., & Yang, C. S. (2015). Using the multi-display teaching system to lower cognitive load. Educational Technology & Society, 18(4), 128–140.
Cheng, Y. (2011). Antecedents and consequences of e‐learning acceptance. Information Systems Journal21(3), 269–299. https://doi.org/10.1111/j.1365-2575.2010.00356.x
Christensen, W. R. (2005). The effects of cognitive load conditions upon performance, anxiety, and self-efficacy in computer-based learning environments. In Dissertation Abstracts International Section A: Humanities and Social Sciences (Vol. 66, Issue 5–A, p. 1634). ProQuest Information & Learning.
Chu, H.-C., Chen, J.-M., & Tsai, C.-L. (2017). Effects of an online formative peer-tutoring approach on students’ learning behaviors, performance and cognitive load in mathematics. Interactive Learning Environments25(2), 203–219.
DeLeeuw, K. E., & Mayer, R. E. (2008). A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load. Journal of Educational Psychology100(1), 223–234. https://doi.org/10.1037/0022-0663.100.1.223.
Feldon, D. F., Callan, G., Juth, S., & Jeong, S. (2019). Cognitive load as motivational cost. Educational Psychology Review, 31. https://doi.org/10.1007/s10648-019-09464-6.
Feldon, D. F., Franco, J., Chao, J., Peugh, J., & Maahs-Fladung, C. (2018). Self-efficacy change associated with a cognitive load-based intervention in an undergraduate biology course. Learning and Instruction56, 64–72. https://doi.org/10.1016/j.learninstruc.2018.04.007.
Fenner, C. R., Jr., & Selmer, J. (2008). Public sector expatriate managers: Psychological adjustment, personal characteristics and job factors. The International Journal of Human Resource Management19(7), 1237–1252. https://doi.org/10.1080/09585190802110026.
Ferrando, M., Ferrándiz, C., Llor, L., & Sainz, M. (2016). Successful intelligence and giftedness: An empirical study. Anales de Psicología32(3), 672–682. https://doi.org/10.6018/analesps.32.3.259431.
Fink, A., & Neubauer, A. C. (2001). Speed of information processing, psychometric intelligence: And time estimation as an index of cognitive load. Personality and Individual Differences30(6), 1009–1021. https://doi.org/10.1016/S0191-8869(00)00089-1.
Friedman, N., Fekete, T., Gal, K., & Shriki, O. (2019). EEG-based prediction of cognitive load in intelligence tests. Frontiers in Human Neuroscience13. https://doi.org/10.3389/fnhum.2019.00191.
Ghorbani, R., & Khormaee, F. (2016). Explaining wisdom on the basis of successful intelligence and coping self efficacy. Developmental Psychology: Journal of Iranian Psychologists12(49), 43–56.
Hadie, S. N. H., Hassan, A., Ismail, Z. I. M., Ismail, H. N., Talip, S. B., & Abdul Rahim, A. F. (2018). Empowering students’ minds through a cognitive load theory-based lecture model: A metacognitive approach. Innovations in Education and Teaching International55(4), 398–407. https://doi.org/10.1080/14703297.2016.1252685.
Hedlund, J., Wilt, J. M., Nebel, K. L., Ashford, S. J., & Sternberg, R. J. (2006). Assessing practical intelligence in business school admissions: A supplement to the graduate management admissions test. Learning and Individual Differences16(2), 101–127. https://doi.org/10.1016/j.lindif.2005.07.005.
Homer, B., Plass, J., & Blake, L. (2008). The effects of video on cognitive load and social presence in multimedia learning. Computers in Human Behavior, 24, 786-797. http://doi.org/c45wb6.
Hong, J., Pi, Z., & Yang, J. (2018). Learning declarative and procedural knowledge via video lectures: Cognitive load and learning effectiveness. Innovations in Education and Teaching International55(1), 74–81. https://doi.org/10.1080/14703297.2016.1237371.
Hsieh, Y.-H., & Tsai, C.-C. (2014). Students’ scientific epistemic beliefs, online evaluative standards, and online searching strategies for science information: The moderating role of cognitive load experience. Journal of Science Education and Technology23(3), 299–308. https://doi.org/10.1007/s10956-013-9464-6.
Huang, J.-C. (2018). A study of financially disadvantaged students’ goal setting, cognitive load, and volition in learning: Cases from elementary schools in Taipei City and New Taipei City. Bulletin of Educational Psychology49(3), 391–411.
Huang, K., Chen, C.-H., Wu, W.-S., & Chen, W.-Y. (2015). Interactivity of question prompts and feedback on secondary students’ science knowledge acquisition and cognitive load. Journal of Educational Technology & Society18(4), 159–171.
Hwang, G.-J., Kuo, F.-R., Chen, N.-S., & Ho, H.-J. (2014). Effects of an integrated concept mapping and web-based problem-solving approach on students’ learning achievements, perceptions and cognitive loads. Computers & Education71, 77–86. https://doi.org/10.1016/j.compedu.2013.09.013.
Hwang, G.-J., Yang, L.-H., & Wang, S.-Y. (2013). A concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Computers & Education69, 121–130. https://doi.org/10.1016/j.compedu.2013.07.008.
Hwang, M.-Y., Hong, J.-C., Cheng, H.-Y., Peng, Y.-C., & Wu, N.-C. (2013). Gender differences in cognitive load and competition anxiety affect 6th grade students’ attitude toward playing and intention to play at a sequential or synchronous game. Computers & Education60(1), 254–263. https://doi.org/10.1016/j.compedu.2012.06.014.
Kalyuga, S. (2011). Cognitive load theory: How many types of load does it really need?. Educational Psychology Review, 23, 1–19. http://dx.doi .org/10.1007/s10648-010-9150-7.
Kalyuga, S., & Plass, J. L. (2018). Cognitive load as a local characteristic of cognitive processes: Implications for measurement approaches. In R. Z. Zheng (Ed.), Cognitive load measurement and application: A theoretical framework for meaningful research and practice. (pp. 59–74). Routledge/Taylor & Francis Group.
Klepsch, M., & Seufert, T. (2020). Understanding instructional design effects by differentiated measurement of intrinsic, extraneous, and germane cognitive load. Instructional Science. https://doi.org/10.1007/s11251-020-09502-9.
Lai, A., Chen, C., & Lee, G. (2019). An augmented reality‐based learning approach to enhancing students’ science reading performances from the perspective of the cognitive load theory. British Journal of Educational Technology50(1), 232–247. https://doi.org/10.1111/bjet.12716.
Lai, L., & Kapstad, J. C. (2009). Perceived competence mobilization: An explorative study of predictors and impact on turnover intentions. The International Journal of Human Resource Management20(9), 1985–1998. https://doi.org/10.1080/09585190903142423.
Lehmann,J., & Seufert,T.,(2020).The Interaction Between Text Modality and the Learner's Modality Preference Influences Comprehension and Cognitive Load. Frontiers in Psychology. , 10(9), 1–11, 10.3389/fpsyg.2019.02820.
Leppink, J., Paas, F., Van der Vleuten, C. P. M., Van Gog, T., & Van Merriënboer, J. J. G. (2013). Development of an instrument for measuring different types of cognitive load. Behavior Research Methods45(4), 1058–1072. https://doi.org/10.3758/s13428-013-0334-1.
Lin, C.-H., Yang, S.-C., & Lai, C.-C. (2013). Support as a mediator of the impact of cognitive load on students’ e-portfolio learning outcomes. Social Behavior and Personality: An International Journal41(1), 17–30. https://doi.org/10.2224/sbp.2013.41.1.17.
Lin, Y.-T., & Lin, Y.-C. (2016). Effects of mental process integrated nursing training using mobile device on students’ cognitive load, learning attitudes, acceptance, and achievements. Computers in Human Behavior55(Part B), 1213–1221. https://doi.org/10.1016/j.chb.2015.03.076.
López-Vargas, O., Ibáñez-Ibáñez, J., & Racines-Prada, O. (2017). Students’ metacognition and cognitive style and their effect on cognitive load and learning achievement. Journal of Educational Technology & Society20(3), 145–157.
Lubinski, D., Benbow, C. P., Webb, R. M., & Bleske-Rechek, A. (2006). Tracking exceptional human capital over two decades. Psychological Science17(3), 194–199. https://doi.org/10.1111/j.1467-9280.2006.01685.x.
Mayer, R. E. (2009). Multimedia learning, 2nd ed. Cambridge University Press. https://doi.org/10.1017/CBO9780511811678.
Mayer, R. E. (2014). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning., 2nd ed. (pp. 43–71). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.005.
Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning and Instruction12(1), 107–119. https://doi.org/10.1016/S0959-4752(01)00018-4.
Musallam, R. (2011). The effects of using screencasting as a multimedia pre-training tool to manage the intrinsic cognitive load of chemical equilibrium instruction for advanced high school chemistry students. In Dissertation Abstracts International Section A: Humanities and Social Sciences (Vol. 71, Issue 8–A, p. 2752). ProQuest Information & Learning.
Ortiz de Guinea, A., & Webster, J. (2015). The missing links: Cultural, software, task and personal influences on computer self-efficacy. The International Journal of Human Resource Management26(7), 905–931. https://doi.org/10.1080/09585192.2012.655758.
Paas, F. G. W. C., & Van Merriënboer, J. J. G. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review6(4), 351–371. https://doi.org/10.1007/BF02213420.
Paas, F., & Sweller, J. (2014). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning., 2nd ed. (pp. 27–42). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.004.
Pogue, M. (2019). Computer self-efficacy as an inherent characteristic of digital natives in online learning environments [ProQuest Information & Learning]. In Dissertation Abstracts International Section A: Humanities and Social Sciences (Vol. 80, Issue 8–A(E). ProQuest Information & Learning.
Schroeder, N. L., & Cenkci, A. T. (2020). Do measures of cognitive load explain the spatial split-attention principle in multimedia learning environments? A systematic review. Journal of Educational Psychology112(2), 254–270. https://doi.org/10.1037/edu0000372.
Sepp, S., Howard, S. J., Tindall-Ford, S., Agostinho, S., & Paas, F. (2019). Cognitive load theory and human movement: Towards an integrated model of working memory. Educational Psychology Review. https://doi.org/10.1007/s10648-019-09461-9.
Sexton, B. T. (2018). Exploring the influence of students’ perceptions of instructional message content relevance and experienced cognitive load on students’ cognitive learning. In Dissertation Abstracts International Section A: Humanities and Social Sciences (Vol. 78, Issue 11–A(E)). ProQuest Information & Learning.
Sternberg, R. J. (1999). The theory of successful intelligence. Review of General Psychology3(4), 292–316. https://doi.org/10.1037/1089-2680.3.4.292.
Sternberg, R. J. (2000). Patterns of giftedness: A triarchic analysis. Roeper Review: A Journal on Gifted Education22(4), 231–235. https://doi.org/10.1080/02783190009554044.
Sternberg, R. J. (2005). The Triarchic Theory of Successful Intelligence. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary Intellectual Assessment: Theories, Tests, and Issues. (pp. 103–119). The Guilford Press.
Sternberg, R. J. (2010). Assessment of gifted students for identification purposes: New techniques for a new millennium. Learning and Individual Differences20(4), 327–336. https://doi.org/10.1016/j.lindif.2009.08.003.
Sternberg, R. J. (2015). Successful intelligence: A model for testing intelligence beyond IQ tests. European Journal of Education and Psychology8(2), 76–84. https://doi.org/10.1016/j.ejeps.2015.09.004.
Sternberg, R. J., & Grigorenko, E. L. (2002). The theory of successful intelligence as a basis for gifted education. Gifted Child Quarterly46(4), 265–277. https://doi.org/10.1177/001698620204600403.
Sternberg, R. J., Jarvin, L., & Grigorenko, E. L. (2011). Explorations in giftedness. Cambridge University Press.
Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22, 123–138. http://dx.doi.org/10.1007/s10648-010-9128-5.
Sweller, J. (2016). Cognitive load theory, evolutionary educational psychology, and instructional design. In D. C. Geary & D. B. Berch (Eds.), Evolutionary perspectives on child development and education. (pp. 291–306). Springer International Publishing. https://doi.org/10.1007/978-3-319-29986-012.
Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York, NY: Springer. http://dx.doi.org/10.1007/978-1-4419-8126-4.
Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review10(3), 251–296. https://doi.org/10.1023/A:1022193728205.
Taylor, S. A. (2012). An analysis of instructional design conditions using e-books for e-learning: Community college students’ cognitive load perspectives. In Dissertation Abstracts International Section A: Humanities and Social Sciences (Vol. 73, Issue 1–A, p. 98). ProQuest Information & Learning.
Van Biesen, D., McCulloch, K., Janssens, L., & Vanlandewijck, Y. C. (2017). The relation between intelligence and reaction time in tasks with increasing cognitive load among athletes with intellectual impairment. Intelligence64, 45–51. https://doi.org/10.1016/j.intell.2017.06.005.
Van Merriënboer, J. J. G., & Ayres, P. (2005). Research on Cognitive Load Theory and Its Design Implications for E-Learning. Educational Technology Research and Development53(3), 5–13. https://doi.org/10.1007/BF02504793.
Wang, C., Fang, T., & Gu, Y. (2020). Learning performance and behavioral patterns of online collaborative learning: Impact of cognitive load and affordances of different multimedia. Computers & Education143. https://doi.org/10.1016/j.compedu.2019.103683.
Wong, A. L. (2015). Allostatic load and Cognitive Functioning: A Preliminary Analysis. In Dissertation Abstracts International: Section B: The Sciences and Engineering (Vol. 75, Issue 8–B(E)). ProQuest Information & Learning.
Zbainos, D., Karoumpali, G., & Kentouri, D. (2013). Development of successful intelligence through movie making: The role of the forethought phase of self-regulation. Journal of Cognitive Education and Psychology12(2), 215–229. https://doi.org/10.1891/1945-8959.12.2.215.
Zhang, L., Kalyuga, S., Lee, C., & Lei, C. (2016). Effectiveness of collaborative learning of computer programming under different learning group formations according to students’ prior knowledge: A cognitive load perspective. Journal of Interactive Learning Research27(2), 171–192.
Zheng, R., McAlack, M., Wilmes, B., Kohler-Evans, P., & Williamson, J. (2009). Effects of multimedia on cognitive load, self-efficacy, and multiple rule-based problem solving. British Journal of Educational Technology40(5), 790–803. https://doi.org/10.1111/j.1467-8535.2008.00859.x.
Zhonggen, Y., Ying, Z., Zhichun, Y., & Wentao, C. (2018). Student satisfaction, learning outcomes, and cognitive loads with a mobile learning platform. Computer Assisted Language Learning. https://doi.org/10.1080/09588221.2018.1517093.
Zimmerman, W. A. (2016). Impact of instructional materials eliciting low and high cognitive load on self-efficacy and demonstrated knowledge. In Dissertation Abstracts International Section A: Humanities and Social Sciences (Vol. 76, Issue 12–A(E)). ProQuest Information & Learning.